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TOPICS FOR THE PHD QUALIFYING EXAMINATION

The qualifying examination in mathematical sciences covers three areas:

(I) Real Analysis

(II) Complex Analysis

(III) Research Area

For the �rst two areas, a list of topics is below. Also, a list of sample exercises
for the two areas is provided. The actual exercises asked on the exam will be
di�erent from the sample exercises; being able to solve the sample exercises is
not su�cient for the exam preparation.

The third exam area pertains to the research subject that the student intends



7. Riemann-Lebesgue Theorem (outline). A function f : [a; b] ! R is Rie-
mann integrable if and only if it is bounded and its set of discontinuity
points is of measure zero.

8. Sequences of functions (uniform convergence, properties, equi-continuity
for a family of functions, Ascoli-Arzel�a’s theorem).

Complex Analysis:

1. If f is complex di�erentiable at z then the Cauchy-Riemann equations are
satis�ed at z.

2. If the partial derivatives of u and v exist and are continuous at (x; y) and
the Cauchy-Riemann equations are satis�ed then f(z) = u(x; y) + iv(x; y)
is complex di�erentiable at z = x+ iy.

3. If f 0(z) = 0 in a region D then f is constant on D.

4. If jf(z)j < M on a curve C then


R
C
f(z)dz



 < ML where L ia the length
of the curve.

5. The following statements are equivalent:

(i) f has an antiderivative F ;

(ii)
R z2

z1
f(z)dz = F (z2)� F (z1);

(iii) If C is a closed curve then
R
C
f(z)dz = 0.

6. Cauchy-Goursat Theorem (outline). If f is analytic on and inside a simple
closed curve C then

R
C
f(z)dz = 0.

7. If f is analytic in the region between closed curves C2 and C1 with C1

inside C2 then Z
C1

f(z) dz =

Z
C2

f(z) dz:

8. The Cauchy Integral Formula.

9. A bounded entire function is constant.

10. If f is analytic on annulus, it equals its Laurent series (outline).

11. Cauchy Residue Theorem.



Sample Exercises:

1. Let

f(x) =

�
sin
�

1
x

�
; for x 6= 0;

�; for x = 0,

where � 2 [�1; 1].

(a) Is f continuous?

(b) Does f have the intermediate value property?

2. Let

f(x) =

�
x2 sin

�
1
x

�
; for x 6= 0;

0; for x = 0,

(a) Show that f is di�erentiable everywhere.

(b) Is f 0 continuous?

3. Given that f is a quadratic polynomial

f(x) = Kx2 +



6. On uniform convergence.

(a) Show that if a sequence ffng of continuous functions converges uni-
formly on a domain 
 � R to a function f , then the limit f is also
continuous on 
.

(b) Let ffng be a sequence of continuously di�erentiable functions such
that ffng and ff 0ng converge uniformly on a domain 
 to the limiting
functions f and g, respectively. Show that for every x in the interior of 
,

g(x) � lim
n!1

f 0n (x) =
�

lim
n!1

fn (x)
�0
� f 0 (x) :

7. State Ascoli-Arzela’s Theorem and outline its proof.

8. The sequence of continuous functions ffn : [0; 2�]! Rgn2N with fn given
by fn(x) = sin(nx) is uniformly bounded, but not equicontinuous. Give
an intuitive reason why such a sequence is not equicontinuous, then give
a rigorous proof.

9. Compute the following integral limit

lim
n!1

Z
R

n sin(x=n)

x(x2 + 1)
dx

10. Consider the function

f(z) =

�
�z2

z ; if z 6= 0;
0; if z = 0;.

Is this function di�erentiable at z = 0? Is it continuous atz



Figure 1: Contour C

15. Show that the only conformal maps from the complex plane onto itself are
the non-constant linear maps, i.e. maps of the form f(z) = az + b, a 6= 0.

16. Let f be a doubly periodic function, that is, there are two complex numbers
w1; w2 with w1=w2 =2 R so that for any z 2 C, f(z) = f(z+w1) = f(z+w2).
Let us also assume that f is meromorphic.

(a) Show that if f is an entire function, then it has to be constant.

(b) Let � be the boundary of the parallelogram with vertices 0; w1; w2; w1+
w2, oriented counterclockwise. Show that if f is analytic on �, thenR

�
f(z)dz = 0.

(c) Assuming that f is analytic on � and has exactly one singularity
inside �, show that the residue at this singularity is necessarily zero.
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